Expression of Eukaryotic Initiation Factor 5A and Hypusine Forming Enzymes in Glioblastoma Patient Samples: Implications for New Targeted Therapies
نویسندگان
چکیده
Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.
منابع مشابه
Dramatic attenuation of hypusine formation on eukaryotic initiation factor 5A during senescence of IMR-90 human diploid fibroblasts.
Deoxyhypusine synthase catalyzes the conversion of lysine to deoxyhypusine residue on the eukaryotic initiation factor 5A (elF-5A) precursor using spermidine as the substrate. Subsequent hydroxylation of the deoxyhypusine residue completes hypusine formation on elF-5A. Hypusine formation is one of the most specific polyamine-dependent biochemical events in eukaryotic cells. Although changes in ...
متن کاملA suggested vital function for eIF‐5A and dhs genes during murine malaria blood‐stage infection
The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, sugg...
متن کاملInhibition of Cd83 Cell Surface Expression during Dendritic Cell Maturation by Interference with Nuclear Export of Cd83 mRNA
Dendritic cells (DCs), nature's adjuvant, must mature to sensitize T cells. However, although the maturation process is essential, it is not yet fully understood at the molecular level. In this study, we investigated the course of expression of the unique hypusine-containing protein eukaryotic initiation factor 5A (eIF-5A), which is part of a particular RNA nuclear export pathway, during in vit...
متن کاملCrystallization and preliminary crystallographic analysis of human eukaryotic translation initiation factor 5A (eIF-5A).
Eukaryotic translation initiation factor 5A (eIF-5A) is universally found in all eukaryotic cells. It is the only protein in nature known to contain the unusual amino acid hypusine, a post-translationally modified lysine. Recombinant human eIF-5A was crystallized by the hanging-drop vapor diffusion method. Crystals were grown at 291 K using (NH4)2SO4 as precipitant. Diffraction data were obtain...
متن کاملTranslation initiation factor eIF-5A expressed from either of two yeast genes or from human cDNA. Functional identity under aerobic and anaerobic conditions.
Translation initiation factor eIF-5A (previously named eIF-4D) is an essential and highly conserved protein in eukaryotic cells that promotes formation of the first peptide bond. One of its lysine residues is post-translationally modified by spermidine to form hypusine, a unique residue required for eIF-5A activity. In Saccharomyces cerevisiae eIF-5A is encoded by two highly homologous genes, T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012